The formation of heterointerface defects in Au/Cu films on Si substrates under direct current in a vacuum ultraviolet environment.

نویسندگان

  • Kai Yan
  • Wenqing Yao
  • Liping Yang
  • Jiangli Cao
  • Yuanyuan Zhao
  • Lixia Zhao
  • Yongfa Zhu
چکیده

Au/Cu metallic films were deposited on p-Si(100) substrates with and without an Au upper layer by magnetron sputtering. The defect formation and nanoscale interfacial evolution at the Au/Cu and Cu/Si interfaces were studied by using Auger electron spectroscopy (AES) and high resolution transmission electron microscopy (HRTEM). The results showed that an increase in defects at the heterointerfaces and in the surface layer was induced by the effect of a direct current (DC) in a vacuum ultraviolet (UV) environment, which could provide more channels for the removal of atoms. The directed migration of atomic clusters in the films was caused by the effect of the DC, which also aggravated the defects' expansion and led to the formation of Au-Cu intermetallic compounds (IMCs). In addition, the voids formed at the interface between the Au/Cu films and the Si substrates were found to be mainly related to the generation of the material Au2Cu3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Iridium (Ir) Thin Films Deposited on to SiO2 Substrates

Very smooth thin films of iridium have been deposited on super polished fused silica (SiO2) substrates using dc magnetron sputtering in argon plasma. The influence of deposition process parameters on film micro roughness has been investigated. In addition, film optical constants have been determined using variable angle spectroscopic ellipsometery, over the spectra range from vacuum ultraviolet...

متن کامل

Formation of Cupric Oxide Films on Quartz Substrates by Annealing the Copper Films

In the present work, cupric oxide (CuO) films were obtained through thermal annealing of the copper (Cu) films deposited on quartz substrates by DC magnetron sputtering method. The annealing was performed in air atmosphere for different times ranging from 60-240 min at temperature of 400 ºC. The influence of annealing times on structural and morphological properties of the films was investi...

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

Ultraviolet detectors based on annealed zinc oxide thin films: epitaxial growth and physical characterizations

In this report, ultraviolet (UV) detectors were fabricated based on zinc oxide thin films. The epitaxial growth of zinc oxide thin films was carried out on bare glass substrate with preferred orientation to (002) plane of wurtzite structure through radio frequency sputtering technique. The structural properties indicated a dominant peak at 2θ=34.28º which was matched with JCPDS reference card N...

متن کامل

Preparation of Fullerene Polycrystalline Films on Different Substrates by Physical Vapor Deposition

Fullerene (C60) films were prepared on Si, ITO, and Cu substrates by the physical vapor deposition (PVD) method. It was observed that the morphology and structure of fullerene films strongly depend on the substrates. Along with the interactions between fullerenes and substrates increasing from ITO, Si to Cu substrate, C60 forms small polycrystalline grains, large polycrystalline grains and full...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2016